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Abstract 

As technology advances exponentially over time, people find ways to incorporate technology into their 

daily activities to improve quality of life through convenience and efficiency. Smart systems have made 

their way into the global market in areas such as home, transportation, dining, and many other sectors 

over the last decade or so, with an ever-increasing demand. For the most part, fitness has remained 

largely mechanical in nature for centuries, particularly when it comes to weight lifting exercises. The 

smart smith machine concept aims to improve exercise monitoring and tracking by incorporating smart 

technology. With image-detecting cameras, sensors, and computers, new systems for detecting weights 

and counting repetitions, among other things, may well be implemented.  

This concept was tested and proven plausible to the appealing public in the initial version of the smart 

smith machine. However, it faced several issues such as poor latency time and a less efficient method 

for weight detection by means of color-coding. The project team hopes to improve on this concept 

further in this iteration of the project, bringing it closer to being a complete product ready for public 

use. 

The project team decided to use the NVIDIA Jetson Nano as the main driver for the project with the 

Intel RealSense D435 Depth Camera acting as the sensor node providing both computer vision and 

distance data. To enhance the thermal performance of the Jetson Nano board, a 40 mm fan was mounted 

onto the heat sink, and an Edimax EW-7811UTC USB Wi-Fi Dongle was utilized to provide the board 

with wireless connectivity. These parts are to be mounted on or close to the Smith Machine to reduce 

the need for extensive cable management. 

The board has been configured with the Jetson Nano Developer Kit SD Card Image running Ubuntu. 

Several project critical software that are critical for the project, such as Python 3, Intel RealSense 

Viewer, PyRealSense2 modules, Darknet YOLOv3, LabelIMG, OpenCV, and Visual Studio Code, 

were installed onto the board successfully. Additional quality-of-life software were installed, such as 

the Jetson Thermal Monitor, GPU Activity Monitor, and XDRP Server for Remote Control. 

This report will elaborate on the work done by the project team in accordance with the Gantt Chart, in 

terms of the development of the software, hardware and other aspects of the smart smith machine system 

concept.  
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1. Introduction 

1.1 Project Overview & Objectives 

Many gym-goers currently find it difficult to digitally track their gym workout progress. They would 

typically track by means of a) recording their workout progress with paper and pen, which is 

cumbersome, unstructured, and unsearchable; b) manually keying in their workout progress into fitness 

tracking applications; or c) using specific gym equipment vendor applications, which does not allow 

for cross-platform/branding compatibility. 

SmartGym is a vision whereby any individual can work out at any community gym across the island 

and have their workouts seamlessly recorded and easily accessible on a cloud. 

SmartGym aims to be “Every citizen’s #1 fitness-lifestyle companion”, a one-stop fitness hub whereby 

everyone can work out at any community gym across the island and have their workouts seamlessly 

recorded and easily accessible on the cloud. It is designed to be interoperable with various gym 

equipment vendors. This way, SmartGym enhances the individual’s overall awareness of their fitness 

lifestyle and paves the way for uplifting the population’s wellness through personalized fitness services. 

These services could include real-time repetition counting, personalized calories computation, body 

composition measurements, anomaly detection for injury prevention, posture correction, workout 

routine recommendation, community building through neighbourhood challenges and gamification 

through achievement challenges. SmartGym currently supports popular fitness equipment such as 

weight stack, exercise bike, and treadmill. The list of supported fitness equipment and activities would 

be progressively expanded. 

The project aims to bring the smith machine onto the SmartGym platform. The smith machine is known 

to be a versatile equipment allowing users to perform different kinds of workouts. The variables 

interacting with the smith machine involve its different applicable weight plates and user positioning. 

The project would benefit the large user base while also allowing the project team to perform research 

and development for future implementations on more challenging projects such as free weights. 

Gradually, the project will be continuous and extended to several teams of students to work on. The 

following table will document the project versions; with the previous, current or future teams that 

worked on it respectively. On the next page, Table 1.1.1 shows the teams and corresponding members 

who have worked on the SmartGym project, as well as the current team working on the project. 
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Table 1.1.1 - SmartGym Project Teams 

Version Team 

1 Team 1:  

(Aw Kang Jie, Shawn Loo, Nitro Low, Ahmad Syakir, Wilren Foo) 

2 [Current Team] Team 2: 

(Ang Ming Hui Rachel, Ong Yew Lee Eugene, Vishnuvarthan S/O S Radha 

Krishnan, Yong Zhining Jasper) 

 

1.2 Project Scope 

As this project is expected to span across several capstone project groups, Table 1.2.1 contains the 

stakeholder requirements checklist of what has been done, what is going to be done in this project, and 

what can be expected to be done in subsequent batches. Subsequently, Table 1.2.2 states the project 

constraints. 

Table 1.2.1 – Stakeholder Requirements Checklist 

 

Code Stakeholder Requirements Status Done By: Remarks 

SH_N1 The total weights of the 

standard weight plates used by 

the user on the Smith Machine 

should be recorded. 

Partially done, to 

be improved on in 

this project. 

Done by 

Team 1; 

To be 

improved 

by Team 2. 

Currently identified 

using coloured 

tapes. Aim to 

identify without 

coloured tapes. 

SH_N2 The system should be able to 

be modularly mounted across 

different Smith Machines by 

changing the system mounts. 

Partially done, to 

be improved on in 

this project. 

Done by 

Team 1; 

To be 

improved 

by Team 2. 

Currently using 

raspberry pi and pi 

cameras, resulting 

in a high chance of 

changing 

components 

resulting in different 

mounts. 

SH_N3 The system should not damage 

the Smith Machine such that it 

voids the warranty of the 

machine. 

Done, to take note 

for subsequent 

implementations. 

Done by 

Team 1; 

Team 2 to 

take note. 

Any changes to the 

system should not 

damage the Smith 

Machine. 

SH_N4 The system should not pose 

any risk to obstructing normal 

operations of the Smith 

Machine. 

Done, to take note 

for subsequent 

implementations. 

Done by 

Team 1; 

Team 2 to 

take note. 

Any changes to the 

system should not 

pose any risk to the 

normal operations 

of the Smith 

Machine. 
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SH_N5 The number of repetitions of 

an exercise done by the user 

should be recorded. 

Partially done, to 

be improved on in 

this project. 

Done by 

Team 1; 

To improve 

by Team 2. 

High latency 

between detection 

of repetitions, to 

improve the system 

and reduce said 

latency. 

SH_N6 The system should be able to 

detect the number of sets of an 

exercise done by the user. 

To be done in this 

project. 

To be done 

by Team 2. 

 

SH_N7 The system should be able to 

export the data gathered. 

To be done by 

future batches 

TBC  

SH_N8 The system should be able to 

detect the type of exercise 

done.  

To be done by 

future batches. 

TBC.  

SH_N9 The system should be able to 

integrate with the existing 

GovTech Smart Gym 

application.  

To be done by 

future batches. 

TBC.  

SH_N10 The system should be able to 

detect whether the weights are 

balanced across the barbell.  

To be done by 

future batches. 

TBC.  

 

Table 1.2.2 – Project Constraints 

Code Constraints 

PC_N1 System must not modify the smith machine 

PC_N2 Cost of project must be within SGD 1000 

Based on the specified stakeholder requirements, the project team aims to design and develop a system 

to: 

1. Detect the total weight of the weight plates in use 

2. Detect the movement of weights (distance, etc.) 

3. Count repetitions and sets 

4. Improve latency of data transmission for computation 
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1.3 System Requirements  

This section describes the translated stakeholder requirements and project constraints into system 

requirements. The methods for verifying and validating system requirements are also elaborated. Table 

1.3.1 and Table 1.3.2 reflect the system requirements and the methods for verification and validation  

of said system requirements respectively. 

Table 1.3.1 – System Requirements  

Acronyms Systems Requirements Source 

SYS_R1 System should be able to be retrofitted on different smith 

machines 
SH_N2, PC_N1, 

SH_N3, SH_N4 

SYS_R2 The system should be able to identify the total weights of the 

standard weight plates on the Smith Machine. 
SH_N1 

SYS_R3 The system should be able to record the number of repetitions of 

an exercise done by the user. 
SH_N5 

SYS_R4 The system should be able to record the sets of repetitions of an 

exercise done by the user. 
SH_N6 

SYS_R5 System should cost under SGD 1000 PC_N2 

 
Table 1.3.2 – System Requirements Verification and Validation 

Ref No. System Requirements Validation & 

Verification Method 
Description 

SYS_R1 System should be able to be 

retrofitted on different smith 

machines 

Demo The system should be 

retrofitted onto the smith 

machine 

SYS_R2 The system should be able to 

identify the total weights of the 

standard weight plates on the 

Smith Machine 

Test Test the system to identify 

specific weight plates 

SYS_R3 The system should be able to 

record the number of repetitions 

of an exercise done by the user 

Test Test the system to record the 

number of repetitions of an 

exercise done by the user 

SYS_R4 The system should be able to 

record the sets of repetitions of 

an exercise done by the user 

Test Test the system to record the 

sets of repetitions of an 

exercise done by the user 

SYS_R5 System should cost under SGD 

1000 
Analysis Have to ensure that the total 

cost of the components does 

not exceed  SGD 1000 
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2. Technical Specifications 

This section will elaborate on the technical aspects of the project. The emphasis will be on the selection 

of components, supported with appropriate justification and technical data. The MCU, Depth Camera 

and Wi-Fi Dongle are among the components required for this project. 

2.1 Component Selection 

Component selection is an important aspect of any project. The components chosen for implementation 

will predominantly define or pave the way for the overall system. For this project, the required 

components have been thoroughly researched and chosen to achieve the system outcomes. 

2.1.1 MCU Selection  

A Microcontroller Unit (MCU) is an embedded controller that comprises a processor unit, memory 

modules, communication interfaces, and other peripherals. There are various kinds of MCU boards that 

are available on the market, and they can be used for a variety of applications. 

Given the features to be implemented, such as weight detection and distance-based repetition counting 

utilizing image tracking, the MCU would require immense computational power. Table 2.1.1.1 depicts 

a component comparison table for the selection of the MCU. Based on the research conducted [1, 2, 3], 

three suitable options have been elaborated in the table. 

Table 2.1.1.1 – MCU Module Comparison Table 
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Based on the generated module comparison table, each of the MCU modules has its own advantages 

and disadvantages. The Rock Pi N10 RK3399Pro is more suited for AI purposes due to its deep learning 

capabilities and powerful performance of data processing speeds. The Raspberry Pi 4 SBC, known to 

be the most versatile module, may be utilized for basic deep learning and AI tasks such as object 

recognition and motion detection. And the Jetson Nano with its NVIDIA Maxwell w/ 128 CUDA cores 

@ 921 MHz is suited for deep learning, heavy image, and graphics processing. After much 

consideration, the team decided to acquire the NVIDIA Jetson Nano Developer Kit, as it will be more 

suitable and versatile as compared to the other two modules. Figure 2.1.1.1 shows an image of the 

procured NVIDIA Jetson Nano Developer Kit. 

 

Figure 2.1.1.1: NVIDIA Jetson Nano Developer Kit - 4GB 

2.1.2 Depth Camera Selection  

To improve on the previous implementation of the smart smith machine system, which utilized multiple 

components for separate functions, the project team aims to reduce the workload and data traffic on the 

MCU by utilizing a single multi-capable component such as depth cameras. Depth cameras provide 

both the ability to track and detect motion, as well as read the depth/distance of objects with the use of 

stereoscopic or time-of-flight (TOF) technology. This single component reduces the need for another, 

and it also boasts superior specifications such as higher depth resolution and field of view among several 

others. Table 2.1.2.1 depicts a component comparison table for the selection of the depth camera. Based 

on the research conducted [4], three suitable options have been elaborated in the table.  

Table 2.1.2.1 – Depth Camera Comparison Table 
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Based on the available options, the Intel® RealSense™ depth cameras were by far identified as the 

easiest to procure. Furthermore, their depth camera product line includes a variety of specifications and 

price points. Given the scope of the project, the team decided that the most suitable variant to 

incorporate would be the D435. Figure 2.1.2.1 shows an image of the procured D435 model Intel® 

RealSense™ depth camera. 

 

Figure 2.1.2.1: Intel® RealSense™ Depth Camera D435 

2.1.3 Wi-Fi Dongle 

The Jetson Nano has an ethernet connector for network connectivity. This is one of the most important 

features of the board since it will need to be able to receive updates and software drivers from the 

internet, as well as allow for remote control and monitoring. Having an ethernet cable, on the other 

hand, would be less optimal because it would necessitate a physical wire connection from the board to 

the internet access port, which is not always within range or practicable to connect. This leads us to the 

idea of using a wireless Wi-Fi adapter that is compatible with the board, is normally compact, and only 

uses one USB connection. Table 2.1.3.1 depicts a component comparison table for the selection of the 

Wi-Fi dongles. With the research conducted [5, 6, 7], and taking into account the compatibility of the 

dongle with NVIDIA Jetson Nano board, three suitable options have been identified and elaborated in 

the table below. 

Table 2.1.3.1 – Wi-Fi Dongle Comparison Table 
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Out of the specified options above, the only Wi-Fi dongle that does not require a disc installation was 

the Edimax EW-7811UTC AC600 Dual-Band USB Adapter. This simplifies the process of installing 

the Wi-Fi adapter on the Jetson Nano and eliminates the chance of installation issues. Apart from its 

ease of use, the Edimax also offers greater data speeds compared to the others and it is the most 

recommended adapter to be used with the Jetson Nano board. Figure 2.1.3.1 shows an image of the 

procured Edimax Wi-Fi Dongle. 

 

Figure 2.1.3.1: Edimax EW-7811UTC AC600 Dual-Band USB Adapter 

 

3. Camera Mount Concept Design 

Designing a modular system that can be adaptable and mounted onto various Smith Machines may be 

approached in a variety of ways. The project team conducted research to identify existing camera 

mounts that would align with the system’s requirements. Given that a single depth camera is the 

predominant component for performing the system’s application, an interface between the camera and 

its mount was to be designed. Furthermore, given that the depth camera has a minimum field-of-view 

(FOV) distance required for image recognition, the camera must be elevated at a certain height from its 

mounting point. As a result, a cantilever was required to facilitate the camera elevation and to serve as 

the interface between the mount and the camera. 

The most common forms of camera mounts identified were mainly tripod mounts, gimbal grip mounts, 

and Go-Pro camera mounts. Mounts that were available on the market were considered for their 

structural built and dynamic panning capabilities, however, they had constraints in terms of design and 

cost. After much consideration and conducting a thorough evaluation of the physical smith machine, 

the project team decided to incorporate a C-clamp design for the camera mount. Following the selected 

C-clamp idea, further research led to the discovery of several distinct ways to implement the design [8], 

such as the one depicted in Figure 3.1, on the following page. Concept sketches were also created as 

shown in Figure 3.2. 
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Figure 3.1: C-Clamp Camera Mount Design   

 

Figure 3.2: Concept Sketch for C-Clamp Camera Mount 

Next, an interface was designed for the camera in order to secure it to the system. Taking into 

consideration that the camera must be allowed to pan vertically and adjusted horizontally, the following 

design was sketched as shown in Figure 3.3. The depth camera is to be mounted on the L-shaped 

interface, as shown in the illustration below.  

 

Figure 3.3: Concept Sketch for Camera Interface 
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Using only a single depth camera, the angular positioning of the device to obtain accurate readings of 

the barbell’s vertical movement and distance, along with a top-down view of the weight plates loaded 

onto the barbell is critical and pertinent for the software implementation of the system. Essentially the 

idea is to position the camera interface at the desired angle before fastening it onto the cantilever. As 

previously stated, the cantilever will serve as the connecting component between the C-clamp camera 

mount and the camera interface. Figure 3.4 depicts an illustration of the overall design concept for the 

camera mount system.  

 

Figure 3.4: Concept Sketch for the Camera Mount System 

Based on the specified stakeholder requirements, it is important to ensure that the entire system should 

be versatile enough to be applied on most or any smith machine without requiring permanent alterations 

or modifications to the machine itself, such as boring holes or sticking adhesives. Prior to the current 

team taking on this project, the previous iteration of the camera mount system was designed to be fitted 

for a specific smith machine and was not adaptable to work on other machines. The design was 

considerably large in size and required the use of various heavy materials. As a result, the project team 

opted to re-evaluate and rework the camera mount system design for the Smart Smith Machine. 
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4. Prototype Development  

4.1 First Iteration  

As soon as the team was allowed access to the gym at the SIT@Dover campus, measurements were 

taken and recorded for every required component of the smith machine as shown in Figure 4.1.1. The 

dimensions of the weight plates were also measured in order to help with software programming. The 

smith machine's structural frame consists mostly of oval tubings and curved cushions. Having said that, 

the mounting point for the C-clamp mount has to be carefully chosen for the entire system. After 

measuring the frames perpendicular to the portion where the weight plates will be put onto the barbell, 

a suitable flat-top position was selected as the system's mounting point. 

             

Figure 4.1.1: Measurements of the Smith Machine Frames 

Several components, including the camera mount and the camera panning interface, were 3D printed 

for this first iteration because they were complex in design and were still in the development stage. The 

Fusion 360 program and Cura 3D Printing Software were used to develop and manufacture the CAD 

designs. Figure 4.1.2 displays CAD model and the initial prototype for the C-clamp mount. 

      

Figure 4.1.2: CAD Model (Left) and the 3D Printed C-Clamp Mount (Right) 
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The C-clamp mount was revealed to be structurally fragile due to its low density after the initial print. 

As a result, the infill percentage for printing the component was significantly raised. The threaded hole 

region of the C-clamp handle, for example, was strengthened with an infill percentage ranging from 

50% to 100%. The specifications for the infill percentage are shown in Figure 4.1.3. 

 

Figure 4.1.3: Infill Settings for the C-Clamp on the Cura 3D Printing Software 

Adhesive rubber pads were also included and placed on several contact points of the C-clamp mount, 

such as the movable jaw and the C-clamp handle, to protect the surface of the smith machine. 

Furthermore, the paddings provide more grip for the C-clamp mount, preventing it from slipping off 

the smith machine’s smooth metal surface. Figure 4.1.4 shows the C-clamp mount with the adhesive 

rubber pads attached. 

       

Figure 4.1.4: C-Clamp Mount with Adhesive Rubber Pads 
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To accurately perform distance tracking, the depth camera must be positioned high enough to 

accommodate its minimum field of view (FOV) distance. The FOV distance for the Intel RealSense 

D435 Depth Camera was measured to be approximately 30 cm. To facilitate the camera elevation, an 

aluminium T-slot measuring 20 mm by 20 mm and 400 mm in length was fabricated. Given that the 

system is to be modularly fitted across several smith machines, the grooves in the T-slot allow for 

position adjustments throughout its length. The fabricated T-slot cantilever with the C-clamp mount is 

shown in Figure 4.1.5. Drop-in fasteners and screws were used to assemble the cantilever arm and C-

clamp mount. 

 

Figure 4.1.5: T-Slot Cantilever Arm 

The cantilever arm was designed to function as a single axis arm, allowing the entire body of the system 

to incline freely in a full 360 degree angle. The depth camera was connected to the camera interface 

component, which was located at the top of the T-slot, where the camera will be able to pan left and 

right as well as tilt up and down. Figure 4.1.6 shows the underside of the Intel RealSense D435 depth 

camera with a screw attachment point for installation. 

 

Figure 4.1.6: Attachment Point of the Intel RealSense Depth Camera 

As previously indicated, a simple camera interface L-bracket was designed and fabricated to fit the 

specifications of the Intel RealSense depth camera. The L-bracket allows the camera to pan while 

placing the least amount of strain on the cantilever arm. The camera may be allowed to traverse 

horizontally using the M6 sized slot for adjustment reasons as illustrated on the CAD model in Figure 

4.1.7, on the following page. 
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Figure 4.1.7: CAD Model (Left) and the 3D Printed L-Bracket (Right) 

When the camera mount components were assembled, it was discovered that the weight of the T-slot 

was too much for the C-clamp to handle and that it could not be tightened at an angle. As a result, 

tightening the screw at the mount to secure the camera at the opposite end of the T-slot did not retain it 

at the required angle. Hence, the team found a workaround by designing and implementing a basic angle 

locking mechanism. The 3D printed double angle locking mechanism holds the cantilever arm at a fixed 

angle as shown in Figure 4.1.8. 

 

Figure 4.1.8.: Double Angle Locking Mechanism  

On the following page, Figure 4.1.9 depicts the complete first iteration of the camera mount system. 

Given the glaring issue such as the inability to retain the cantilever at its desired angle for the camera, 

further design development and fabrication is required for the next design iteration.  
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Figure 4.1.9: First Iteration of the Camera Mount System 

4.2 Second Iteration 

After conducting a physical test on the first iteration of the camera mount system at the gym, the project 

team identified the following issues with the current design: 

1. The T-slot cantilever arm was too heavy. 

2. There was no proper mechanism to secure the cantilever at its desired position and angle. 

As a result, it was evident that the T-slot cantilever needed to be replaced with a significantly lighter 

alternative. Aluminium was unquestionably the material of choice for the cantilever since it is both 

lightweight and sturdy. After much consideration on the particular grade of aluminium that would be 

suitable, the team settled on the AA6061 aluminium grade for its exceptional strength and easy 

machinability. Subsequently, an AA6061 aluminum plate with dimensions of 400 mm x 50 mm (L x 

B) and a thickness of 1.5 mm was procured and fabricated to produce an improved cantilever arm. 

Several holes were drilled on the plate for it to be assembled with the C-clamp mount and the camera 

interface.  

In addition, an appropriate angle locking mechanism was incorporated to secure the cantilever arm at 

its desired position. A rotary dial was designed to facilitate the angle locking of the cantilever arm. The 

rotary dial was 3D printed, along with a redesigned C-clamp mount, to allow the rotary dial to be 
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integrated into the design. The rotary dial comprises multiple holes around its radial axis for M5 screws 

to secure the cantilever at the desired angle. Figure 4.2.1 displays the CAD models of the modified C-

clamp mount and the rotary dial respectively. Following that Figure 4.2.2 depicts the physical assembly 

of the new components. 

         

Figure 4.2.1: CAD Models of the C-Clamp Mount and Rotary Dial  

 

 

Figure 4.2.2: Rotary Dial and C-Clamp Mount Assembly 

On the following page, Figure 4.2.3 shows the fabricated aluminum plate assembled with the newly 

added rotary dial and C-clamp mount. The rotary dial functioned as expected and offered additional 

security for the cantilever arm, considering that it will be carrying an expensive depth camera on the 

other end. 
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Figure 4.2.3: Aluminium Plate Cantilever  Arm with Angle Locking Rotary Dial 

Despite being able to support the weight of the camera, a potential problem was discovered while testing 

the new cantilever. Although the material was strong, the length and thickness of the plate did not 

prevent it from wobbling when an external force was introduced. Given that most smith machine users 

in the gym do not always gently place the barbell back onto the machine, the factor of vibration must 

be considered. Therefore, to reduce and possibly eliminate vibrations from traveling up the cantilever, 

the cantilever was bent into an L-shape as shown in Figure 4.2.4.  

 

Figure 4.2.4: Fabricated L-Shaped Cantilever Arm 

To further improve the existing camera interface, the same concept utilized for the cantilever angular 

positioning was adopted. A semi-rotary mounting interface was designed and fabricated for the camera. 

Figure 4.2.5 shows the CAD model for the new camera interface L-bracket and rotary dial, as well as 

the assembly of the components with the camera, respectively.  
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Figure 4.2.5: CAD Model (Left) and the 3D Printed Camera Interface in Application (Right) 

Figure 4.2.6 depicts the complete second iteration of the camera mount system, including all the new 

and modified components. The new method for angular positioning has proven to be successful and has 

considerably improved the entire hardware of the system from the previous iteration.  

 

Figure 4.2.6: Second Iteration of the Camera Mount System 

The project team aims to develop ways to further reduce vibration travel to the camera in the next 

iteration, as well as improve other features of the camera interface component, such as designing a 

proper housing for the camera to prevent it from being tampered with or damaged by any foreign object. 
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4.3 Third Iteration 

For the third and final iteration of the camera mount system, several modifications were done to tackle 

the complications discovered during software testing. The following are the problems that were 

identified by the project team:  

1. The L-shaped cantilever did not entirely reduce the vibration caused when using the machine. 

2. The L-bracket was compromised due to the weight of the camera. 

3. The camera placement had to be changed from horizontal to vertical. 

After much discussion on the necessary modifications to assist the software segment, the project team 

decided to enhance the designs for the 3D printed components in order to tackle the challenges 

encountered.  
In order to reduce the vibration traversing across the cantilever arm, a prefabricated C-channel was 

procured as shown in Figure 4.3.1. Given that the C-channel has a more robust construction, the effects 

of machine vibration would be considerably minimized, preventing the camera from moving at its fixed 

location. The aluminium grade chosen for the C-channel was AA6063. To interface the C-channel to 

the other components, the same holes fabricated on the previous aluminum plate were replicated. The 

sharp edges of the C-channel were also chamfered for safety and to avoid causing damage to any 

external object. 

 

Figure 4.3.1: Fabricated C-Channel Cantilever Arm 

Next, the L-bracket for the camera was modified to be more structurally stable to prevent it from 

warping due to the weight of the camera. To resolve this, the thickness of the L-bracket and other camera 

interface components was increased, hence improving the component's overall design. Furthermore, the 

shorter side of the L-bracket was reinforced for rigidity and to keep the camera horizontally constrained. 

The design of the rotary dial was also modified to suit the other interfacing components. 
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Additionally, a housing for the depth camera was designed and 3D printed to protect the camera from 

being damaged or harmed by any foreign object. Figure 4.3.2 displays the CAD models of the 

redesigned L-bracket and camera housing.  

 

Figure 4.3.2: CAD Models of Modified L-Bracket and Camera Housing 

Figure 4.3.3 depicts the assembled camera interface with the modified L-bracket, rotary dial and camera 

housing unit. With the modified camera interface, the camera can now be positioned vertically and 

horizontally with more structural integrity compared to the previous iterations.  

        

Figure 4.3.3: Fully Assembled Camera Interface 

After assembling all the new components for the final iteration of the system, the project team realised 

that there was an absence of cable management. Hence, several small slide-on cable guides were 

fabricated and attached C-channel cantilever arm. On the following page, Figures 4.3.4 depicts the 3D 

printed slide-on cable guides and their installation on the cantilever arm respectively. 
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Figure 4.3.4: 3D Printed Slide-On Cable Guides (Left) Fitted onto Cantilever Arm (Right) 

Figures 4.3.5 and 4.3.6 depict different profiles of the final iteration of the camera mount system, 

including all the new and modified components. This system is able to be mounted onto and dismounted 

from the smith machine with ease to perform its various function. Given that most of the components 

are 3D printed the weight of the entire system is manageable as compared to a fully metal fabricated 

system. 

 

Figure 4.3.5: Final Iteration of the Camera Mount System (Side) 

 

Figure 4.3.6: Final Iteration of the Camera Mount System (Front) 
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5. Software Development  

5.1 Set-Up 

The first step is to create the operating system that the Jetson Nano would use. Following the step-by-

step installation guide available on NVIDIA’s website, the project team downloaded the Jetson Nano 

Developer Kit SD Card Image and flashed it onto a Micro SD Card. This allows the SD card to act as 

the main storage driver and operating system of the board. The Jetson Nano operates using an ARM-

based Ubuntu operating system [9].  

After successfully installing the operating system, the team proceeded to update all the drivers and 

firmware for the board. This is to ensure that all the software and firmware that the board has are up to 

date before proceeding to develop anything. Several additional software were acquired to enhance the 

working process of the team, such as the XRDP Server for remote desktop connection, a GPU 

Utilization Monitor, as well as a python-based thermal monitor that displays the board’s thermal 

readings onto a graph. 

The XRDP Server allows the team to remotely access the board from another computer [10]. This allows 

the team the flexibility to work on the board from a separate device, alleviating the need to always have 

access to a spare keyboard, mouse, and display monitor. This is important as such devices would not be 

readily available in the gym when the team conducts on-site testing. Although this method of remotely 

accessing the board is good, it has issues with regards to latency and reduced frame rates depending on 

the network that the board and the computer are connected to. 

The GPU Activity Monitor is a python based tool that displays the GPU activity onto a graph. There 

are methods to observe the GPU activity directly through the terminal. However, this displays the values 

onto a constantly updating command-line interface and is not very user-friendly. As such, the team has 

installed the GPU Activity Monitor to get a visual graphical representation of its utilization. This would 

be used further on in the project when testing the machine learning algorithms to observe the amount 

of load the GPU is undergoing, giving feedback on the efficiency of the software. A snapshot of the 

GPU Activity Monitor is shown in Figure 5.1.1. 

 

Figure 5.1.1: Snapshot of the GPU Activity Monitor 
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The python based thermal monitor was installed to allow the team to easily track the temperature of the 

board’s components. This is important as the board may thermal throttle itself to prevent itself from 

burning out due to overheating when running many complicated tasks, such as streaming live video 

feed and running machine learning algorithms. Another point of concern is that the project team has 

used 3D printed parts, such as the chassis for the board, that were made using PLA. PLA can start 

flexing under pressure from as low as 60 degrees Celsius [11]. As such, the project team needs to ensure 

that the board is cool enough to avoid this possibility of causing the PLA to flex. A snapshot of the 

thermal monitor is shown in Figure 5.1.2. 

 

Figure 5.1.2: Snapshot of the Jetson Thermal Monitor 

Apart from the quality of life softwares, the project has also installed several key modules that would 

help the development of the project. The softwares installed were Intel RealSense Viewer, Visual Studio 

Code, Python 3, OpenCV. 

Intel RealSense Viewer is the software required to run the Intel RealSense D435 depth camera that the 

team used [12]. This was among the first software installed to test the functionality of the procured 

D435 camera. Aside from the Viewer itself, the team was also in the process of installing its python 

module PySense 2.0. This would allow the team to utilize the camera in customized python software. 

However, due to the lack of experience with Ubuntu and Python, the project team was facing difficulties 

installing the PySense 2.0 module onto the board. On the following page, Figure 5.1.3 depicts a snapshot 

of the Intel RealSense Viewer. 
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Figure 5.1.3: Snapshot of the Intel RealSense Viewer 

Visual Studio Code was installed as the main coding platform for the project. This is a very 

comprehensive code editor that has many features to allow the smooth development of software 

projects. Considering that the team would have to spend lots of time programming, this would help the 

project team be more efficient in developing the code required for the project. 

Python 3 was installed as most of the softwares available online were Python-based. There are also 

many libraries available in Python that the project team would eventually be using to create the project. 

On top of Python 3, the project team also installed PyTorch. This is an open-source machine learning 

framework that was included in the Jetson Nano’ Developer Kit SD Card Image. 

Another software installed was OpenCV. OpenCV is an open-source computer vision and machine 

learning software library [13]. This software was chosen for the project as the project would need to 

use both computer vision and machine learning to identify the weights on the Smith Machine.  

The last software to install is the Darknet YOLOv3. This is to allow the system to implement object 

detection to detect the weight plates. This is part of the process to identify the weights on the machine. 

This software has several requirements, namely CMake, Powershell, CUDA, OpenCV, and cuDNN. 

All the steps required to install the software can be found on their GitHub page; 

https://github.com/AlexeyAB/darknet.  

 

https://github.com/AlexeyAB/darknet
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5.2 Repetition Counting 

In order to create a custom project to use the RealSense camera’s distance reading capabilities, the 

module pyrealsense2 is needed. To install this module, the team followed the steps stated in GitHub’s 

librealsense page; https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python. 

The project team faced issues getting python to import the RealSense module and followed the steps 

shown in Figure 5.2.1 retrieved from https://github.com/IntelRealSense/librealsense/issues/7722. 

 

Figure 5.2.1: Script to Install Pyrealsense2 Libraries for Jetson Nano 

After successfully installing the module, the project team followed pysource’s guide on creating a real-

time distance detection software using python and the realsense camera;  

https://pysource.com/2021/03/11/distance-detection-with-depth-camera-intel-realsense-d435i/.  

https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python
https://github.com/IntelRealSense/librealsense/issues/7722
https://pysource.com/2021/03/11/distance-detection-with-depth-camera-intel-realsense-d435i/
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The initial version of the code only has a check for the escape key after the camera is initialized. If the 

escape key is pressed, the system will exit. Otherwise, it will keep retrieving the distance at a particular 

pixel of the distance frame and display it onto the colour frame which contains the real-time image. 

Taking advantage of this starting point, the team designed a flow chart that allows the system to count 

the number of repetitions done per set and the number of sets in total. The flow chart is illustrated in 

Figure 5.2.2. 

 

Figure 5.2.2: Repetition and Sets Counting Flowchart 

To start recording the exercise, the user needs to press a button to allow the system to know to take 

reference of the current distance to the weights. For the current prototype system, the spacebar key is 

used to signal when the recording is supposed to start and stop. In the final implementation, this button 

will signal when the user wishes to start tracking his exercise and stop tracking his exercise upon 

completion of all sets. 
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As the current system is unable to use computer vision to identify the position of the weights within the 

image frame, the project team opted to maintain the utilization of the mouse to adjust the distance 

measuring position and adjust the distance reading position to the weights. In the final implementation, 

the approximate centre of the weights will be used as the position to measure the distance. 

To maintain the accuracy of the reference position, the system is programmed to stop moving the 

distance reading position once the exercise has begun. This is to prevent users from accidentally shifting 

the distance reading position as this may affect the relative displacement of the weights. 

Once the spacebar key is pressed for the first time, the “start” flag will be inverted to be true. This means 

that the exercise recording has commenced. This will clear existing repetition and set variables to track 

the new series of exercises. At this instance, the system will also take note of the current distance of the 

weight from the camera. This will act as its reference home position. As long as the displacement of the 

weights exceeds a predefined distance away from its reference position, the flag “rep_far” will toggle 

to be true, signalling that the weights are currently far enough away from the reference position to count 

as half a repetition. The repetition will be counted as completed when it comes within a nearer threshold. 

For the initial development, the thresholds were defined to be 30cm for the far threshold and 10cm for 

the near threshold.  

When the weights complete one full repetition, the system will take note of the time that the repetition 

was completed in monotonic time. The system will compare the time that the last repetition was 

completed against the current monotonic time. If it exceeds a predefined threshold, the system will take 

it as having completed a set and append the number of repetitions to the sets array before clearing the 

repetitions counter. The current time threshold is set to five seconds for testing purposes, but this value 

can be adjusted depending on the user’s preference. 

Upon completion, the user can end the recording of the exercise by pressing the spacebar again. If any 

repetition was done and the timing threshold to append the value to the set has yet to be reached, the 

system will automatically append the repetition counts to the sets array and display the array. In the 

final implementation of this project, the sets array will be exported via a .json file for further analysis 

in subsequent project developments. 
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5.3 Image Recognition 

To train the neural network of the system, a large variety of weight plate images are essential. These 

images comprised of either the same or different weight plates with varying backgrounds. Once these 

images are collected, the aspect ratio of the images are to be set to 3:4, and the size of the images should 

be 640 x 480 pixels. Since it is a repetitive process, a script was written to automate the resizing process 

for over 200 images. 

 

Figure 5.3.1: Images Collected for Training the Neural Network 

Apart from resizing the images, it is recommended to rename all the files into a specific naming 

convention for easy identification. To do so, the team created a python script to rename all the files 

inside a particular folder to the following name convention: “IMG_XXXX.jpeg”, where XXXX is its 

indexed position within the folder. The snapshot of the script is shown in Figure 5.3.2. 

 

Figure 5.3.2: Python Script for Renaming of Image Files 

After the images have been processed, the images were labelled by running the open-sourced tool name 

labelling retrieved from GitHub at https://github.com/tzutalin/labelImg. The first step is to adjust the 

predefined_classes.txt under the data folder of labelling main directory. The predefined_classes.txt is 

supposed to contain the list of classes that needs to be identified, which in this case only contains 

weights. Boxes had to be drawn around the object that is to be labelled, which in this case is the weight 

https://github.com/tzutalin/labelImg
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plates, as shown in Figure 5.3.3 below. As a result, it generates .txt files containing the notations that 

show the desired object to learn within the image of the same file name. 

 

Figure 5.3.3: A Box Drawn Over the Image of the Object (Weight Plate) for Labelling 

Once the notations are generated, the system needs to be able to link the images to the notations for the 

sake of training, testing, and validation of the computer vision system. The system that the project team 

chose to use was Keras You Only Look Once (YOLO) version 3 to train the computer vision system 

followed by YOLO Tiny to be run on the board. YOLO Tiny is a faster version of YOLOv3 with 

approximately 442% increased efficiency.  

With all the images annotated, the next step is to create a text file containing the list of images to use to 

train the images, test and validate the trained system. This was done by creating a python script to 

compile the names of all the images within a folder. The python script is shown in Figure 5.3.4. 

 

Figure 5.3.4: Python Script to Compile the Names of All the Images Within a Folder 



Page 38 of 59 
 

With the text files created, training of the custom dataset can begin. For this process, the project team 

used Google Colab to train the custom dataset. The instructions were created by PySource from 

https://pysource.com/2020/04/02/train-yolo-to-detect-a-custom-object-online-with-free-gpu/.  

The project team archived the images and the annotations into a single .zip archive named images.zip 

and uploaded the archive onto Google Drive. From there, the team created a new Google Colab 

notebook created by PySource and linked the notebook to the Google Drive account with the images 

archive by running the second line of code from the notebook. The whole notebook was then executed 

to begin the training process. 

The notebook first clones the Darknet version of YOLOv3 from GitHub before compiling it using the 

allocated NVIDIA GPU. The notebook then configures the Darknet network for training based on 

YOLOv3 by setting the number of classes to train to one and sets the number of filters to 18. These are 

parameters that would be used when training the new dataset. The next instruction will be to create the 

name of the object to detect, in this case weights. It also creates the data file of the object which includes 

the number of classes to train, the file containing the name of the files to train, test and validate the 

trained system, the file that contains the object names, and the backup location of the output files. The 

notebook then unzips the images and starts the training process. 

Once the training has completed or the process has reached a sufficiently low loss rate, the latest weight 

file will be stored in the link Google Drive account under the YOLOv3 folder. After downloading the 

latest folder, the file can be downloaded and put into the same folder as the file yolo_object_detection.py 

that is part of the PySource project documents. The next few changes are to change a few lines in 

yolo_object_detection.py. The first change is line 11 to change the name of the class to weights. The 

second change is to change line 14 to link images_path to the directory that contains several test or 

validation images. If there is an error saying “IndexError: invalid index to scalar variable” when trying 

to execute the python file, change line 19 to “output_layers = [layer_names[i - 1] for i in 

net.getUnconnectedOutLayers()]” from “output_layers = [layer_names[i[0] - 1] for i in 

net.getUnconnectedOutLayers()]”. With all the changes made to yolo_object_detection.py, the next 

step is to run it and test that the custom dataset has been trained sufficiently to detect weights. A sample 

image of the output from running the file is shown in Figure 5.3.5, on the following  page. 

https://pysource.com/2020/04/02/train-yolo-to-detect-a-custom-object-online-with-free-gpu/
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Figure 5.3.5: Initial Sample Image of Object Detection in Action 

The next thing to verify is to test it with the Darknet YOLOv3. To test it with the live webcam feed, the 

project team used the original Darknet YOLOv3 files and made some modifications. The first file to 

change is the yolov3.cfg. To ensure successful identification of the different files, a copy was made and 

named yolov3-obj.cfg.  

The first change to be made is to change line 20’s max_batches to 2000 and line 22 steps to be 

1600,1800. The next change is to change all three occurrences where classes = 80 to classes = 1 and all 

three occurrences where filters = 255 to filters = 18.0. The next step is to make two new files, obj.names 

and obj.data to be stored in the directory build\darknet\x64\data\ from the main darknet folder. The file 

obj.names will contain the name of the class trained, namely weights. The file obj.data is supposed to 

contain the data as shown in Figure 5.3.6. 

 

Figure 5.3.6: Files for Darknet 

The files train.txt and test.txt are the same as generated previously and are to be shifted to 

build\darknet\x64\data\. The image files and their annotations are all to be shifted to 

build\darknet\x64\data\obj\. To test the program on Windows, the following command was executed 

“darknet.exe detector demo data/obj.data yolov3-obj.cfg yolo-obj.weights -c 0”. This is running the 
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darknet YOLOv3 on detector demonstration mode using the obj.data file with YOLOv3 using the 

custom dataset in yolo-obj.weights from the first webcam device. By running the above command, the 

project team then tested the weights identification using several images that were captured. A sample 

of the output is shown in Figure 5.3.7. 

 

Figure 5.3.7: Sample Image of Object Detection in Action with Accuracy Output in Percentage 

After successfully identifying the weight plates, the next step is to identify the mass of said weight 

plates. 

5.4 Weight Identification 

To identify the weights, the project team would need to combine both the object detection from YOLO 

and the depth reading from the RealSense camera. The object detection would be able to give two 

dimensions of the object, in particular the x-axis and the y-axis, while the depth sensor would provide 

the third dimension, namely the z-axis,  required to accurately size the object. 

The main problem is to identify how many millimetres (mm) is represented within one pixel of the 

image frame. If the weight is near the camera, the weight will occupy a larger number of pixels of the 

image frame than when the weight is further away from the camera. Therefore, the depth camera will 

help to allow the system to identify how far the object is. To do so, the system would first have to be 

calibrated by identifying the number of pixels a certain weight occupies at a certain distance. The weight 

would then be moved to a different distance and the number of pixels would then be recorded. With 

this data, it is possible to identify the change in the number of mm per pixel (mm/pixel) according to 
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the change in the distance. This is done by plotting a graph and finding the best fit line, followed by 

finding the equation of the best fit line. The data gathered is shown in Figure 5.4.1 when the camera is 

set to the resolution of 640 pixels by 480 pixels. 

 

Figure 5.4.1: Tested mm/pixel Values at various Depths for 640 by 480 Pixels Resolution 

With the data shown in Figure X, it is possible to plot a graph of mm/pixel against the depth to observe 

the change in the mm/pixel as the depth changes. The graph that has the best fit line and the equation 

of the line is shown in Figure 5.4.2 

 

Figure 5.4.2: mm/pixel Graph 

From Figure 5.4.2, it can be observed that the equation of the mm per pixel against depth is y = 0.0015x 

+ 0.0333, where y is the mm/pixel and x is the depth. With the mm/pixel, the actual size of the weights 

detected can be found simply by multiplying the mm/pixel by the number of pixels the weight occupies. 

For this project, the project team was unable to integrate the depth sensor together with the object 

detection program due to a lack of time. As such, the project team developed the weight identification 

as part of the Darknet YOLOv3 project and defined the weight that is at the edge of the barbell to be a 

2.5kg weight with a diameter of 19cm to act as a point of reference to identify the mm/pixel despite the 

lack of the depth sensor. 
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With the method of identifying the actual size of the weights done, the next step is to design the software 

to implement this calculation. Figure 5.4.3 depicts the flowchart of the software for weight 

identification. 

 

Figure 5.4.3: Weight Identification Software Flowchart  

The software first initializes the object detection program. Once the program is running, the program 

will constantly refresh the Red, Green, Blue (RGB) frame that contains the image captured by the 

camera. The software will then check whether there is an object in the RGB frame. If no object is 

detected, the program will keep refreshing the RGB frame. Once an object is detected, the software will 

check whether the likelihood that the object detected is actually a weight plate is above a threshold. If 

it does not meet the threshold, the program will check whether this is the last object that was detected 

in this frame. If it is, the system will loop back to the refresh RGB frame step. However, if this object 

is not the last object that was detected, it loops back to checking the threshold of the accuracy of the 

next object.  
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If the object detected is above the accuracy threshold, the system will then identify the orientation of 

the weight by checking whether its length or height is greater. This is to determine which of the 

dimensions is the diameter of the plate. This is because all the weight plates are identified based on their 

diameters. Once the orientation of the plate is identified, the number of pixels representing the diameter 

is stored in the struct containing all the information pertaining to the weights. Other information, such 

as the borders of the weight, the pixel length and height, category of weight (referring to the type of 

weight plate), and the actual size of the plate, are stored in the struct as well. 

Once the struct has been created, it is then appended to the linked list containing all the information 

required to identify the weights. If the current object is not the last object detected, it will loop back to 

check whether the next object is within the accuracy threshold. Otherwise, the program will move on 

to identify the reference weight. The program will just cycle through the linked list and identify the top 

most weight and note it as the reference weight. The flow chart for this sequence is described in Figure 

5.4.4. 

 

Figure 5.4.4: Reference Weight Identification Flowchart 

Once the reference weight is identified, it is assigned the index of category 2.5kg weight plate and the 

actual size of 19 cm. This will then be used to identify the other weights by calculating the actual size 

of each individual plate and comparing them against the data set of the diameters of the weight plates. 

  



Page 44 of 59 
 

The program will then assign the closest weight category’s index to the object. The weight categories 

are as follows: 

1. 1.25kg (16cm) 

2. 2.5kg (19cm) 

3. 5kg (23cm) 

4. 10kg (30cm) 

5. 15kg (36.5cm) 

6. 20kg (43cm) 

Once the weights have been identified, the software will then print the weight of the plates in the RGB 

frame. 

To implement the above, two files were altered: demo.c and image_opencv.cpp. The file demo.c is 

executed when using the webcam to display real time object detection, while the image_opencv.cpp is 

used to detect the objects and identify the boundaries of the object. The changes made to demo.c are 

shown in the following figures. 

 

Figure 5.4.5: Weight Defined Values in Demo.c File 

In Figure 5.4.5, the sizes of the weights in mm were defined and the index of the categories were 

declared. 
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Figure 5.4.6: Demo.c File struct for Weight Plates 

In Figure 5.4.6, the struct of the weight plate is declared. It contains the index in the detected objects’ 

linked list, the weight category, the borders of the object, the pixel length of the greater length, a flag 

named “larger_value” to determine whether the length or height is greater, the pixel length and pixel 

height. These variables are stored as integers. There is another float variable called “size” containing 

the actual size of the weight. This is done by multiplying the pixels by the mm/pixel.  

 

Figure 5.4.7: Demo.c Linked List Functions 

In Figure 5.4.7, the code required to create a linked list is created. The code to print all the contents of 

the linked list is also included. 
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Figure 5.4.8: Demo.c Function to Identify Weight Category 

In Figure 5.4.8, the code to identify the weight category once its actual size has been computed is shown. 
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Figure 5.4.9: Demo.c of Weight Identification Function (Part 1) 

In Figure 5.4.9, the first section of the main function (print_weight_size) is defined. The inputs are the 

OpenCV matrix containing data of the image frame, the first node of the linked list containing all the 

detected objects, the number of objects detected, and the accuracy threshold of the objects. 

The program then cycles through the objects detected that meet the accuracy threshold and extracts the 

information required by the struct. Once the struct is created, it is appended into the linked list of the 

weights. The program then cycles through all the detected weight plates and identifies which of the 

weight plates is the top most or left most plate (depending on the orientation of the weights). and defines 

it as the reference weight. 
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Figure 5.4.10: Demo.c of Weight Identification Function (Part 2) 

In Figure 5.4.10, the program then calculates the mm/pixel based on the reference weight. With the 

calculated mm/pixel, the program then calculates the size of each weight and assigns the identified 

category to the object. The program then prints all the data in the linked list and adds the label containing 

the identified weight to the image frame by calling the function “draw_box_name”. 

 

Figure 5.4.11: Demo.c Calling of Weight Identification Function 

The last change to demo.c is shown in Figure 5.4.11, where the function “print_weight_size” is called 

after the function “draw_detections_cv_v3” is called. The function “draw_detections_cv_v3” is to draw 

the bounding boxes of the object that was detected. The changes made to image_opencv.cpp will be 

shown in the following images. 

 

Figure 5.4.12: “image_opencv.cpp” Weight Category Definitions 

In Figure 5.4.12, the index of the weight categories are assigned. 
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Figure 5.4.13: “image_opencv.cpp” Border Calculation Functions 

In Figure 5.4.13, the functions to get the left, right, top, and bottom borders of the object are declared. 

The actual implementations are extracted from the function “draw_detections_cv_v3”. 

 

Figure 5.4.14: “image_opencv.cpp” Weight Plate struct and Linked List Node Definition 

In Figure 5.4.14, the struct “Weight_Plate” and “Node” are defined. 
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Figure 5.4.15: “image_opencv.cpp” Function to Draw Bounding Box Labels onto Colour Frame 

In Figure 5.4.15, the function “draw_box_name” was defined. This function displays the weight of the 

plate according to the index of the weight category onto the RGB frame. The actual implementation to 

identify the location to draw the text is extracted from “draw_detections_cv_v3”. 

 

Figure 5.4.16: “image_opencv.cpp” with Removed Bounding Box Labels 

The final change to image_opencv.cpp is shown in Figure 5.4.16, where line 1142 was commented. 

This is to remove the label that contained the type of object that was detected. 
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6. Project Findings 

This section will discuss the project’s findings, lessons learned, and possible improvements. 

Training of Image Recognition using Google Collab 

Training of image recognition is more compatible with Linux-based operating systems (OS) as 

compared to Windows OS. The project team considered the alternative to run the code on the Google 

Collab notebook to train the YOLOv3 system to identify the weight plates. Given the exact same 

CUDA, CUDNN, and Python versions, the code was able to be executed flawlessly on the Linux-based 

Google Collab, as compared to the Windows OS. 

Angle Placement of Camera 

The project team conducted considerable testing to determine which angle positioning of the camera 

will still allow it to perform object detection before it stops detecting/recognizing objects. The angle 

was measured to be between 18 to 20 degrees. 

Orientation of Camera 

The YOLO object detection system was only able to detect the weights when they are horizontally 

relative to the camera’s point of view. As the majority of the images utilized in the training dataset 

comprised of weights stacked in the horizontal position, the project team suspects this to have caused 

the training algorithm to only detect weights stacked horizontally. 

Utilisation of RGB Camera using a Point of Reference vs Utilising Depth Sensor for Weight Plate 

Identification 

There were two ways of implementing the weight plate identification.  Table 6.1 shows the pros and 

cons of each possible solution. 

Table 6.1 – Pros and Cons for RGB vs Depth Camera 

 
Utilisation of RGB Camera using a Point 

of Reference 
Using Depth Sensor 

Pros  • Easier to implement 

• With reference, weight plate detection 

is simpler 

• More dynamic 

• Able to have second layer of verification 

to identify weights 

Cons • Not dynamic 

• Purely reliant on image recognition 

• Needs to have a reference recognized 

by the YOLO system 

• Need to interface the depth sensor into 

the YOLO system. 
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Limitations from Distance between Camera and Weight Plate 

When the distance between the camera and the weight plate(s) is too near or too far, the system will 

either not recognise the weight plate, or it will tag the wrong label for the weight plate. Possible causes 

are likely due to insufficient training data, or a lack of duration to run the training algorithm. 

Using Newer Version of YOLO 

The currently used YOLOv3 was only able to run the object detection on the Jetson Nano at about 2.3 

frames per second. A possible way to improve the system is to utilize a newer version of YOLO (either 

v4 or v5), as the object detection function would perform better with the newer version of YOLO. 

Camera Mount Reliability vs Flexibility 

The team originally envisioned the camera mount as a system that would focus on flexibility in terms 

of its capacity to pan, extend, and tilt with a suitable amount of force. One of the inspirations is flexible 

joint camera mounts, such as the one shown in Figure 6.1 below. 

 

Figure 6.1: Flexible Joint Camera Mount 

However, when the team refined the design for the camera mount, it became evident that there was a 

flaw in the concept owing to several elements that were not anticipated prior to physical testing. When 

using the smith machine, it is fairly usual for the weighted barbell to bang into the base or one of the 

levels along the guide rails, causing vibration to resonate through the machine's construction. Because 

this camera mount is designed to be mounted on the structure itself, the vibrations affected the camera 

by causing it to deviate from its initial fixed position and even rattling the camera, creating interference 

in its accuracy to read the weight plates or conduct the necessary repetition counting. 

This issue created a conflict between reliability and flexibility, where if the system is to be more reliable, 

some flexibility may need to be sacrificed in order to accomplish it. The choice to incorporate a rotary 

dial angle locking mechanism and a solid structural cantilever into the design reduced the flexibility of 



Page 53 of 59 
 

adjusting the camera position on the fly, necessitating the use of specific tools to even make minor 

adjustments to the camera's position. The project team was unable to accomplish the level of flexibility 

that was previously hoped for, but considering that this adjustment was essential to assure the fulfilment 

of stakeholder needs, it was judged necessary in the end. 

The camera mount's modular architecture retains some degree of freedom in that the camera mount, 

cantilever, and camera interface modules are interchangeable to meet the demands of various smith 

machines. As demonstrated in this study, design modifications on the module may be made 

individually, reducing the requirement to rethink and remake the entire system to meet the needs of a 

new machine. 

Identification of Weight Plates using Plate Thickness 

In this project the diameter of the weight plates has been used to differentiate the different types of 

weight plate and their corresponding weights.  However, if the weight plates all share the same diameter, 

their thickness will have to be the defining parameter. 

However, the idea of using the thickness of the weight plate may not be ideal. Referring to Figure 6.2, 

the idea would only work only if the camera were placed perfectly parallel above the weight plate in 

pos 1, but in reality, the camera can never be positioned perfectly above all weight plates mounted on 

the barbell. 

 

Figure 6.2: Visualisation on How Weight Plate Identification Works Using Plate Thickness 

There are also cases where the weight plate is placed like in pos 2 and 3.  The actual weight thickness 

is labelled in green, which would correspond to a certain weight value.  However, the system would 

take the thickness, which is labelled in purple, which is the thickness of another type of weight plate, 

hence returning the wrong label/value of the weight plate. Therefore, utilizing the thickness for weight 

plate identification is not encouraged. 
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7. Project Timeline  

Figures 7.1 and 7.2 depict the Gantt Chart generated for the entire project timeline for CAPSTONE 1 

and 2, respectively. The Gantt Chart reflects all of the project tasks that were completed within the 

specified timeframe. 

 

Figure 7.1: Project Gantt Chart for CAPSTONE 1 

 

Figure 7.2: Project Gantt Chart for CAPSTONE 2 
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8. Budgeting  

As shown in Table 8.1, the project was allocated a fund of SGD1000, and the remaining balance as of 

1st March 2022 is SGD350.35.  

Table 8.1 – Project Cost Management 
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9. Conclusion  

Over the past two trimesters, the project team conducted immense research on both the theory and 

algorithms required to bring both the hardware and software components to life. The project team was 

able to demonstrate the two main features the project team set out to improve on, namely the weight 

identification by image recognition and the counting of repetitions and sets by an integrated depth 

camera. These features were accomplished by a single integrated modular system consisting of a depth 

camera, an MCU, and a modular camera mounting system. Despite the challenges posed by the COVID-

19 pandemic throughout the project’s duration, the project team was able to push through and complete 

the second iteration of the Smart Smith Machine. The project outcomes were documented to be handed 

over to the next project team to learn from the challenges faced and how the project could be improved. 

Every iteration that is completed brings the project closer to its end goal of being deployed at gyms all 

around Singapore.  
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Appendix A 

The following tables depict the project’s Bill of Material (BOM). The BOM List is segmented into the 

various hardware modules of the system. 

 

 


